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What is it that keeps us awake? Our assumption is that we consciously control 

our daily activities including sleep–wake behavior, as indicated by our need to 

make use of an alarm clock to wake up in the morning in order to be at work on 

time. However, when we travel across multiple time zones or do shift work, we 

realize that our intentionally planned timings to rest and to remain active can 

interfere with an intrinsic regulation of sleep/wake cycles. This regulation is 

driven by a small region in the anterior hypothalamus of the brain, termed as 

the “circadian clock”. This clock spontaneously synchronizes with the environ­

mental light–dark cycle, thus enabling all organisms to adapt to and anticipate 

environmental changes. As a result, the circadian clock actively gates sleep and 

wakefulness to occur in synchrony with the light–dark cycles. Indeed, our internal 

clock is our best morning alarm clock, since it shuts off melatonin production and 
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boosts cortisol secretion and heart rate 2–3 h prior awakening from Morpheus 

arms. The main reason most of us still use artificial alarm clocks is that we 

habitually carry on a sleep depth and/or the sleep–wake timing is not ideally 

matched with our social/work schedule. This in turn can lead hourglass pro­

cesses, as indexed by accumulated homeostatic sleep need over time, to strongly 

oppose the clock. To add to the complexity of our sleep and wakefulness 

behavior, light levels as well as exogenous melatonin can impinge on the clock, 

by means of their so-called zeitgeber (synchronizer) role or by acutely promoting 

sleep or wakefulness. Here we attempt to bring a holistic view on how light, 

melatonin, and the brain circuitry underlying circadian and homeostatic pro­

cesses can modulate sleep and in particular alertness, by actively promoting 

awakening/arousal and sleep at certain times during the 24-h day. 

I. Introduction 

Despite the fact that humans have invented technologies such as artificial 

light and online services that allow us to do a certain activity at obviously any 

time, only a fraction of the humankind is involuntarily awake at night and sleeps 

during the light phase of the 24-h cycle. This natural synchrony in behavioral 

states among humans is also surprising because we think that we consciously plan 

our individual daily activities and thus our bed and wake-up times. There are 

certainly considerable interindividual and intercultural differences in the timing 

of sleep and wakefulness (e.g., chronotypes), but as to our knowledge there are no 

night-active human ethnic groups or cultures. This obviously points to a clear 

biological basis and an evolutionary adaptive behavior favoring a day-active 

human species. The neuroanatomical basis of the biological underpinnings of 

the daily (circadian) regulation of sleep–wake rhythms has been unraveled 

in the past century, but their physiological functions and implications on our 

health are still being intensely explored. Thus, how daily rhythms of behavioral 

states are controlled is an active area of current research. Given its relevance to 

human health, well-being, and cognitive performance, this is an important 

challenge to solve, particularly based on the fact that more and more people 

are forced to be awake at inappropriate or at biologically non-optimal times 

during shiftwork. 

In order to assess the effect of any stimuli either from the environment 

(e.g., light) or from the body itself (e.g., endogenous melatonin) on the regulation 

of awakening, a good insight of factors, which regulate sleep and wakefulness, is 

needed. Sleep and wakefulness are controlled by two primary factors: the 
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circadian clock and the intrinsic need for sleep reflected in the homeostatic 

properties of sleep and determined by recent sleep–wake history. In Section II, 

we describe the neural mechanisms by which the circadian clock influences the 

sleep–wake system. In particular, we attempt at providing a better grasp of the 

physiological functions of the circadian clock and their relation to correlates of 

sleep intensity and its role of actively gating awakening/arousal and sleep at 

certain times during the 24-h day. We have new evidence from recent electro­

physiological and functional magnetic resonance imaging (fMRI) data, to propose 

a potential brain circuitry underlying circadian and homeostatic influences on 

human alertness and cognition. 

Environmental conditions (e.g., light, sound, temperature, social stimuli) 

play an important role in the control of sleep and wakefulness as well as their 

intensity and quality (i.e., spectral composition) respectively. Light is certainly 

the most regularly occurring stimulus in the environment. The challenge of 

a daily change of the light–dark (LD) cycle has profound impact on a wide 

range of biological functions and behavior. Thus, light exerts powerful non-visual 

effects. In humans, light is intuitively linked with an alert or wakeful state. On the 

other hand, closing the eyelids or dimming or turning off the lights has a very 

powerful soporific (i.e., sleep inducing) effect, particularly in children, sleep 

deprived adults and older people. Compared to the effects of light on human 

circadian rhythms, little attention has been paid to its acute alerting action. In 

Section III, we summarize studies from the past two decades, which have defined 

and quantified the dose (illuminance levels), exposure duration, timing and 

wavelength of light needed to evoke circadian and/or alerting responses in 

humans, as well as their temporal relationship to light-induced changes in 

endocrinological and electrophysiological sequelae of alertness. Furthermore, 

neuroanatomical and neurophysiological findings from animal and human 

studies elucidating a potential role of light in the regulation of sleep/wake states 

and its repercussion on cognitive performance are discussed. A brief outlook of 

promising non-clinical applications of lights’ alerting properties will be given, and 

its involvement in the design of more effective lighting at home and in the 

workplace will be considered. 

The pinealhormone melatonin is probably the most light-sensitive hormone 

in humans and also in other organisms, so that measuring the 24-h profile of 

endogenous melatonin levels provides accurate information about the prior light 

history of an individual. The phase, amplitude, and duration of the active phase 

of melatonin secretion are all important measures to assess whether somebody 

has delayed or advanced circadian rhythms or whether somebody lives in dim or 

brightly lit environments. Thus, there is an intimate transduction of the LD cycle 

reflecting external time to the endogenous “melatonin cycle” reflecting internal 

time. Humans are more light sensitive in terms of melatonin suppression than 

previously thought. Light intensities as low as 40 lux are sufficient to attenuate the 
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evening increase of melatonin secretion when the light source yields predomi­

nance in the blue range of its spectral composition. Interestingly, there is a tight 

and significant correlation between light’s melatonin suppressing effect and its 

alerting response, leading some researchers to the speculation that melatonin 

could act as an internal sleep facilitator. Thus, possible roles of endogenous 

melatonin in the regulation of sleep and wakefulness are being discussed in 

Section IV. Furthermore, the use of exogenous melatonin and newly available 

melatonin agonists to treat sleep disorders such as sleep onset insomnia or 

premature awakening from sleep are also dealt with in Section IV. 

II. Circadian and Homeostatic Impetus for Wakefulness 

“There is no animal which is always awake or always asleep, such that all sleep 

is susceptible of awakening and all wake time beyond the natural time limit is 

susceptible to sleep” (Aristotle, On Sleep and Sleeplessness, 350 BCE). Living organisms 

are permanently exposed to internal and external changes and the combined 

action of these dynamics may determine the transition between conscious-con­

trolled to unconscious-automated behavioral states (Tononi and Edelman, 1998). 

Behavioral or perceptual states continuously vary between the extremes, with on 

the one hand resting sleep during which consciousness is strongly attenuated and 

on the other hand a state of wakefulness when we actively interact with the 

environment, and during which we engage in many cognitive and other activities 

(Dijk and Archer, 2009). It is nowadays largely accepted that in human beings, 

homeostatic and circadian sleep–wake regulatory processes are continuously work­

ing in harmony or in opposition to each other to allow maintenance of behavioral 

states such as sleep and wakefulness at appropriate time points within the 24-h LD 

cycle. However, these states per se seem far from being unitary concepts since their 

consolidation is achieved by the mutual interaction of multiple brain processes. 

Even though the interplay between regulatory processes aspires to stability 

within a given state, there exist fine grained fluctuations in the way we perceive 

our environment over the waking state. Such slight differences may be exag­

gerated by inter-individual differences in the orchestration of the underlying 

processes. A good example of such fluctuations is the discovery by Bodenhausen 

(1990), who observed that human subjects exhibit stereotypic biases in their 

judgments to a much greater extent when these were rendered at a time of day 

reflecting reduced arousal levels for them. Judgments were significantly more 

affected by stereotypic beliefs in the morning hours for evening types and in the 

evening hours for morning types. Thus, the quality of judgment fluctuated 

within the state of wakefulness, which itself showed a differential temporal 

pattern across the 24-h day in morning and evening types. 
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A.	 TIMING AND CONSOLIDATION OF THE HUMAN SLEEP–WAKE CYCLE: FROM BASIC 

AROUSAL STATES TO CONTROLLED COGNITIVE BEHAVIOR 

As mentioned above, sleep and wakefulness are periodically occurring at 

specific times of the 24-h LD cycle. Their consolidation is achieved by the interplay 

between circadian and homeostatic oscillators, initially conceptualized in the two­

process model of sleep and wake regulation (Borbely, 1982; Daan et al., 1984). The  
homeostatic process represents an hourglass process steadily building up with 

increasing time awake and exponentially declining during sleep. The circadian 

process reflects an endogenous, nearly 24h variation in the propensity for sleep and 

wakefulness and was originally assumed to be independent of the homeostatic 

process (i.e., the amount of elapsed time awake) (Borbely, 1982; Daan et al., 1984). 
This process originates in the suprachiasmatic nuclei (SCNs) of the anterior 

hypothalamus, an anatomical structure supporting numerous periodic biological 

functions and considered as the circadian master clock in most living organisms. 

Findings acquired under a variety of experimental conditions (e.g., internal desyn­

chronization of the sleep–wake cycle, forced desynchrony paradigms, fragmented 

sleep–wake cycles, sleep deprivation, sleep displacement) point in a remarkably 

consistent way to the existence of a powerful and active drive for wakefulness at the 

end of the habitual waking day in humans (Lavie, 2001). Thus, the circadian 

master clock is tuned such that peak arousal levels in humans are generated in 

the early evening hours, just before opening the gate for sleep. Accordingly, this 

time window is characterized by maximal circadian wake promotion and has been 

called the wake maintenance zone by Strogatz and colleagues (1987). While the 

endogenous scheduling of the wake maintenance zone to the end of the habitual 

waking day seems paradoxical at first sight, it takes all sense when one considers it 

in combination to the temporal evolution of the homeostatic process throughout 

the habitual 24-h sleep–wake cycle. For instance, it is the very high circadian-based 

propensity for wakefulness that prevents us falling asleep early in the evening hours 

when homeostatic sleep pressure is at its highest level and maximally promotes 

sleep. Thus, during the latter part of the normal waking day, circadian and 

homeostatic systems work in opposition to ideally ensure a consolidated period of 

wakefulness. Edgar et al. (1993)  have first conceptualized this opponent action 
based on the framework of the two-process model and data acquired in diurnal 

squirrel monkeys. SCN-lesioned squirrel monkeys significantly increased total sleep 

time, which was associated with a 15-fold reduction in the length of wake bouts 

during the subjective day and no changes in the length of the wake bouts during the 

subjective night, leading the investigators to suggest that the circadian clock is 

actively involved in the promotion of wakefulness, by opposing the homeostatic 

accumulated drive for sleep. Results from human forced desynchrony studies have 

confirmed the above-mentioned model (Dijk and Czeisler, 1994, 1995) by showing  

the paradoxical positioning of the circadian alertness peak just before habitual sleep 
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time, as indexed by longest sleep latencies and highest amounts of wakefulness 

within scheduled sleep episodes at this time of the day. Likewise, the SCN also 

promotes sleep (i.e., circadian increase in sleep tendency) as the biological night 

progresses (Dijk and Czeisler, 1994, 1995) counteracting the decrease in sleep 

propensity associated with accumulated sleep, thus allowing us to maintain a 

consolidated 8-h sleep episode. 

Besides sleep and wakefulness, neurobehavioral efficiency seems to be 

affected by the same paradoxical interplay of circadian and homeostatic 

sleep–wake promotion over the 24-h cycle such that the wake-dependent dete­

rioration is minimal during the wake-maintenance zone. Data gathered in a 

constant routine paradigm, which challenged homeostatic sleep pressure condi­

tions by either sleep depriving or sleep satiating study volunteers by regular nap 

opportunities throughout the circadian cycle, indicate a clear circadian modula­

tion of cognitive performance and subjective sleepiness even in the absence of 

prominent homeostatic sleep pressure (Fig. 1). This circadian modulation is 

temporally organized such that neurobehavioral performance (alertness scores 

and performance lapses) is maximally boosted in the late evening hours. Under 

sleep deprivation conditions (>16 h of enforced wakefulness), a steep decline on 

neurobehavioral performance can be observed when the testing is extended into 

the biological night, i.e., just after the circadian arousal signal has turned off. 

However, as illustrated in Fig. 1, neurobehavioral performance does not decline 

linearly with increasing time awake throughout 40 h of sustained wakefulness, but 

shows a strong improvement coinciding with the biological day, when circadian 

arousal promotion kicks in again (see also Cajochen et al., 1999b, 2004; Graw 

et al., 2004; Horowitz et al., 2003). 
Importantly, compelling data from forced desynchrony studies indicate that 

circadian and homeostatic processes do not simply add up to characterize daily 

alertness and performance modulations. It has been observed that the amplitude 

of the observed circadian modulation in performance depends on homeostatic 

sleep pressure, such that increasing homeostatic sleep pressure attenuates circa­

dian wake promotion during the subjective evening hours (Dijk and Archer, 

2009). Hence, minor changes in the specific interplay between both processes 

lead to significantly disrupted stability patterns in cognitive states even through­

out a normal waking day. This may explain why a series of studies found 

significant performance fluctuations in cognitive behavior throughout a normal 

waking day in morning and evening chronotypes differing in circadian and 

homeostatic sleep–wake regulatory processes throughout the course of a normal 

waking day (see Schmidt et al., 2007 for a review). Such interindividual differences 

have recently been used as a tool in order to investigate the functional neuroa­

natomy subtending modulatory effects of sleep–wake regulation on higher order 

human behaviors. We will briefly describe these observations within the context 

of the brain circuitry involved in the circadian control for states of sleep and 

wakefulness. 
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FIG. 1. Dynamics of subjective sleepiness on the Karolinska Sleepiness Scale (KSS), objective 

vigilance on the Psychomotor Vigilance Task (PVT), and core body temperature (CBT) across a 40 h 

SD (high sleep pressure; filled circles) and NAP protocol (low sleep pressure; open circles). The upper 

two panels indicate the timing of the naps (black bars) and scheduled episodes of wakefulness (white 

bars) respectively for the SD and NAP protocol. Data are plotted against the midpoint of the time 

intervals. Relative clock time represents the average clock time at which the time intervals occurred. 

Modified from Cajochen et al. (2001). 

B.	 BRAIN CIRCUITRY UNDERLYING CIRCADIAN AND HOMEOSTATIC INFLUENCES ON 

HUMAN COGNITION: A POSSIBLE SCENARIO 

How circadian oscillations in the SCN as well as circuits controlling for states 

of sleep and wakefulness interact at the cerebral level in order to regulate arousal 

and cognitive behavior is still an open question. Output of the SCN indirectly 

reaches target areas implicated in the regulation of sleep and wakefulness (ventro­

lateral-preoptic area (VLPO), tuberomammillary nucleus (TMN), lateral 

hypothalamus (LH), thalamus, and brainstem nuclei via its connections to the 
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dorsal medial hypothalamus (DMH)) (Mistlberger, 2005). Concomitantly, diffuse 

monoaminergic activating systems are under circadian control and impinge on 

many thalamo-cortical areas, suggesting that the interaction with sleep home­

ostasis could take place at many different levels (Dijk and Archer, 2009). Work by 

Aston-Jones and colleagues (Aston-Jones, 2005; Aston-Jones et al., 2001) has 
shown that the noradrenergic locus coeruleus (LC) system plays an important 

role in the circadian regulation of alertness. Within the framework of their model, 

the SCN indirectly communicates with the LC via projections to the dorsomedial 

hypothalamic nucleus (DMH). Evidence for that comes from neurophysiological 

experiments, which revealed circadian variations in LC impulse activity and 

showed that lesions of the DMH eliminated these circadian changes in LC 

activity, suggesting a functional significance of the SCN–DMH–LC circuit 

(Gompf and Aston-Jones, 2008). Through LC activity with its widespread tha­

lamic and cortical connections, this pathway may control a variety of central 

nervous system functions related to noradrenergic innervations, including alert­

ness and vigilance, and also higherorder cognitive processes. We have recently 

collected indirect evidence that the circadian arousal signal generated by this 

circuitry is modulated by homeostatic sleep pressure (Schmidt et al., 2009). In this 
study, the interaction between these processes at the cerebral level was investi­

gated in chronotypes differing in circadian and homeostatic sleep–wake regula­

tory processes under normally entrained day–night conditions (Baehr et al., 2000; 
Bailey and Heitkemper, 2001; Kerkhof, 1991; Kerkhof and Van Dongen, 1996; 

Mongrain et al., 2004, 2006a, 2006b). Extreme morning and evening chronotypes 

were examined at different time points within a normal waking day, while 

performing a sustained attention task in an fMRI environment. The main results 

of this study are summarized in Fig. 2. 

In agreement with previous studies (Kerkhof, 1991; Mongrain et al., 2006a, 
2006b; Taillard et al., 2003), we observed that even when the timing of the scheduled 

testing session was adapted to the specific sleep–wake schedule of the volunteers, 

morning-type individuals presented higher increases in homeostatic sleep pressure 

at the end of a normal waking day, as indexed by slow-wave activity (SWA) at the 

beginning of the night. This effect was paralleled by higher subjective sleepiness and 

lower objective vigilance levels in the morning than evening types during the 

evening hours. Interestingly, the fMRI results revealed that maintenance of optimal 

sustained attention performance in the subjective evening hours was associated with 

higher cerebral activity in evening than morning chronotypes in a brainstem region 

compatible with the LC and in an anterior hypothalamic region putatively encom­

passing the suprachiasmatic area (SCA). Thus, in agreement with the brain circuitry 

proposed by Aston-Jones and colleagues, our data suggest that activity in these 

regions contributes to circadian wake promotion in the subjective evening hours. 

Importantly, we further observed that activity in the SCA decreased with increasing 

homeostatic sleep pressure, suggesting a direct influence of homeostatic and 
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FIG. 2. (A) Exponential decay function adjusted on relative SWA in sleep cycles (NREM sleep) 

measured from the central frontal derivation for all-night EEG of the night preceding the evening scan 

acquisition (red line: morning types; blue line: evening types. (B) Increased task-related response in the 

dorsal pontine tegmentum and the anterior hypothalamus, compatible with the LC and SCA, 

respectively, in evening as compared to morning chronotypes during the subjective evening for 

optimal sustained attention during the performance of a Psychomotor Vigilance Task. Functional 

results are displayed at p <0.001, uncorrected threshold, over the mean normalized structural MRI of 

the population. Corresponding parameter estimates (arbitrary units) are displayed for event indicators of 

fast (<percentile 10) reaction times (light grey: morning types; dark grey: evening types). (C) Regression 

analysis of the relation between estimated BOLD responses during optimal task performance in the SCA 

region and the amount of SWA during the first sleep cycle in the preceding night (r = 0.54, p <0.05,  

n = 27). Crosses: morning types, Triangles: evening types. Modified from Schmidt et al. (2009). 

circadian interactions on the neural activity underpinning diurnal variations in 

human behavior. Our results corroborate findings in the rat, which showed suppres­

sion of SCN activity by SWA throughout various vigilance states (Deboer et al., 
2003, 2007), and globally speak in favor of the initial assumption that an increase in 

homeostatic sleep pressure impacts on the circadian wake-promoting signal during 

the subjective evening hours. Another study used the differential vulnerability to 

sleep loss according to a polymorphism in the human PER3 clock gene (Viola et al., 
2007) to evidence nonlinear interaction patterns between the two basic processes at 

the cortical level throughout a normal waking day and after a night of sleep 

deprivation (Vandewalle et al., 2009; see  Dijk and Archer, 2009 for a review). In 

this study, the temporal profile of cortical activity underlying successful performance 

on an executive task (n-back paradigm) could be tracked by the dynamics predicted 

by the interplay between circadian and homeostatic processes according to each 

subject’s specific genotype. 

However, the underlying mechanisms by which homeostatic sleep pressure 

modifies the circadian arousal signal in the evening hours are still unknown. It has 

been suggested that adenosine is a homeostatic regulator of sleep need (Benington 

et al., 1995; Landolt et al., 1995; Porkka-Heiskanen et al., 1997; Strecker et al., 
2000). During prolonged wakefulness, the energy-producing systems in the brain 
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run down: brain glycogen reserves are exhausted and ATP levels are depleted. 

During prolonged wakefulness, as ATP is degraded to ADP, AMP, and eventually 

adenosine, extracellular adenosine levels rise in some parts of the brain, including 

the basal forebrain (see Landolt, 2008 for a review). It has been hypothesized that, 

once adenosine reaches sufficient concentrations after prolonged wakefulness, it 

has an inhibitory action on the wake-promoting neural circuitry of the basal 

forebrain and probably activates VLPO neurons by reducing inhibitory 

Gamma-aminobutyric acid (GABA)ergic inputs Accordingly, after sleep depriva­

tion, VLPO neurons fire about twice as fast as they do during normal sleep, 

implying that they are under the influence of homeostatic factors that reflect sleep 

need (Lu et al., 2002; Saper et al., 2005a; Sherin et al., 1996; Szymusiak et al., 1998). 
In humans, there is evidence that adenosinergic neurotransmission plays a role in 

NREM sleep homeostasis. Indeed, a polymorphism in an adenosine-metabolizing 

enzyme contributes to high interindividual variability in deep SWS duration and 

intensity (Retey et al., 2005). Furthermore, the adenosine receptor antagonist 

caffeine has the ability to attenuate electroencephalographic (EEG) markers of 

NREM sleep homeostasis (Landolt et al., 1995). Accordingly, caffeine administra­

tion is effective in counteracting the detrimental performance effects of extended 

wakefulness (Retey et al., 2006; Wyatt et al., 2004). 
To sum up, sleep and wakefulness are determined by the multiple interplay 

between circadian and homeostatic oscillators. Active circadian wake promotion 

during the subjective evening hours attempts the achievement of stability of 

cognitive states throughout a normal waking day, by opposing the increasing 

homeostatic sleep pressure at this time of the day. Likewise, circadian sleep 

promotion takes place in the early subjective morning hours to oppose the 

decreasing homeostatic sleep pressure allowing a consolidated bout of sleep. 

However, fine-grained interindividual differences in the complex interplay 

between these processes may result in significant modulations in cognitive beha­

vior even throughout a normal waking day. A couple of studies recently took 

advantage of such interindividual differences for the investigation of the cerebral 

correlates underlying circadian and homeostatic influences on human cognition 

(Schmidt et al., 2007; Vandewalle et al., 2009). Together with data gathered in the 
animal domain, their results point into the direction that the circadian arousal 

signal and accumulated homeostatic sleep pressure directly interact at the cere­

bral level in order to control cognitive behavior throughout wakefulness. In one 

possible scenario (Fig. 3), the efficacy of the circadian arousal signal, generated by 

the indirect communication of the circadian master clock to the brainstem LC 

and thereby to widespread cortical areas, may be modified through adenosine, a 

putative mediator of sleep homeostasis. Importantly, these assumptions should 

now be investigated in the framework of protocols more systematically manip­

ulating the interaction between both processes and allowing tracking their inter­

action throughout the entire 24-h cycle. 
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FIG. 3. A possible simplified scenario of the circadian and homeostatic interplay to regulate 

alertness and cognitive performance over the 24 h cycle. With increasing time awake, homeostatic 

sleep pressures accumulates throughout the day and may affect cortical activation by mechanisms 

including synaptic potentiation in several circuits. This mechanism is tied to homeostatic regulation of 

sleep slow-wave activity during the night. Information about the amount of accumulated homeostatic 

sleep pressure is transferred to hypothalamic structures including the circadian master clock which in 

turn feeds back in a “time-of-day” specific manner by sending signals to wake-promoting brainstem as 

well as thalamic structures. From there on, the information is transferred to cortical areas in order to 

allow the maintenance of an adequate cognitive state (Aston-Jones, 2005). 

III. Effects of Light on Human Wakefulness 

To be of functional significance, circadian rhythms must be entrained to the 

24-h LD cycle. Thus, it is not surprising that light plays a powerful role on behavior 

and physiology. In fact, a change in the timing of the external LD cycle leads to a 

shift in endogenous phase of circadian rhythms (Brainard et al., 1997). Besides 
these long-term effects on circadian phase, many acute effects of light have been 

consistently shown for a wide range of physiological processes, such as hormonal 

secretion, heart rate, sleep propensity, alertness, body temperature, pupillary 

constriction, and gene expression (Aalto and Hilakivi, 1986; Badia et al., 1991; 
Berson, 2003; Cajochen et al., 1992, 1996, 2005, 2006; Lavoie et al., 2003; Muñoz  

et al., 2005). Both long-term and acute effects of light are usually referred to as non­

visual (or non-image forming, NIF) effects, since they drift apart from the classical 

involvement of rod and cone photopigments in the visual responses to light. These 

NIF responses were firstly demonstrated in mice devoid of classic photoreceptors, 

since light still had the capacity to elicit circadian phase-shifting responses 

(Freedman et al., 1999) and melatonin suppression (Lucas et al., 1999). In humans, 

the fact that visually blind people still exhibit light-induced melatonin suppression 
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(Czeisler et al., 1995) and that the spectral sensitivity of NIF responses differed from 

visual responses (Brainard et al., 2001; Thapan et al., 2001) challenged the classical 
involvement of rod and cone photopigments in responses to light. Furthermore, 

since Berson and coworkers (2002) detected intrinsic photosensitive retinal gang­

lion cell (ipRGC) in the retina of mammals, it began to emerge that the eye 

performs a dual role in detecting light for a range of behavioral and physiological 

responses distinct from the classical visual responses. Melanopsin-containing 

ipRGCs have a specialized non-visual retino-hypothalamic tract which provides 

direct neuronal connection to the SCN, as well as direct and indirect (via SCN) 

projections to brain areas implicated in the regulation of arousal (Gooley et al., 
2003). Furthermore, the SCN has connections to the pineal gland, which is 

responsible for the regulation of melatonin, as well as to many areas that share 

an input from the visual photoreceptor system, such as the lateral geniculate 

nucleus, pretectum and superior colliculus (Lockley and Gooley, 2006). The 

brain areas implicated in the non-visual effects of light beyond these ipRGC 

projections are still unknown. Nevertheless, if one considers the number of brain 

areas that are just one synapse away from ipRGCs, and the numerous projections 

of just one key target of ipRGCs, the SCN, it becomes evident that non-visual 

responses to light could affect many brain functions, including cognitive functions. 

In this section, we will address the following points: (1) how light (timing, dose, 

and wavelength) impinges on human wakefulness; (2) how light modulates cogni­

tion, in particular in tasks associated with sustained attention, and (3) the impor­

tance of lights effect in non-clinical settings. 

A. LIGHT SWITCHES ON THE CLOCK AND THE HOURGLASS 

Even in the absence of an LD cycle, the rest-activity rhythm persists with a 

periodicity of approximately 24h, instead of redistributing across the 24-h day. The 

synchronization to LD cycles is obtained through variation in the response of the 

circadian pacemaker in the SCN to light pulses, whereby light exposure late in the 

biological day delays sleep onset in humans, while exposure early in the biological 

day (dawn) advances activity onset (Czeisler and Gooley, 2007). Thus, light acts as a 

synchronizer (Zeitgeber) by transmitting the information about external time (LD 

cycle) to the organisms’ internal timing system and as consequence marginally 

influences the switch between behavioral states such as sleep and wakefulness. 

Wakefulness requires a certain alertness level to actively interact with the 

environment. Thus, alertness is a construct associated with high levels of environ­

mental awareness, which can be operationalized through many converging mea-

surements, including subjective responses, behavior, and brain activity (Buysse et al., 
2003). Alertness is associated with self-reported high levels of wakefulness and low 
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levels of fatigue, short response times, fast and more accurate cognitive perfor­

mance, and lowerlevels of theta activity (4.75–7.75Hz) in the electroencephalo­

gram (EEG), particularly in the frontal cortex (Badia et al., 1991; Cajochen et al., 
1995, 1999a;  Daurat et al., 2000). Subjective perception of alertness heavily depends 
on time-of-day, to the extent that the circadian modulation of alertness has a 

strikingly similar temporal association with the circadian rhythm of core body 

temperature (CBT) with its maximum in the evening and nadir in the early 

morning (see also Section III; Kleitman, 1987). Considering the temporal dynamics 

of these processes on alertness, one can hypothesize that light exerts its alerting 

effects most strongly when the circadian drive for sleep is at its maximum (i.e., in the 

early morning at the CBT minimum) and under high homeostatic sleep pressure 

conditions (i.e. after more than 16h of wakefulness). However, besides the temporal 

occurrence of a light pulse relative to the circadian and homeostatic system, factors 

such as the intensity of light, light stimulus duration, and its wavelength play a 

crucial role in determining the impact on alertness and cognitive performance. 

B. ALERTING EFFECTS OF LIGHT 

The vast majority of light studies have been conducted at night (Badia et al., 
1991; Cajochen et al., 2000; Campbell and Dawson, 1990; Foret et al., 1996; 
Lockley et al., 2006) during a time when one would expect most pronounced 

alerting effects in humans. Indeed light at night significantly enhances subjec­

tive alertness and reduces objective markers of sleepiness, such as EEG theta 

activity and the incidence of slow-eye movements as assessed by the electro­

oculogram (EOG). However, also during the biological day, when melatonin is 

at minimal level, light does impact alertness. In an “in-lab” study, individuals 

who were exposed to polychromatic white light with levels >7000 lux for 20min 

during daytime exhibited an enhancement in cortical activity during an oddball 

task and subjective alertness improved in a dynamic manner, such that these 

alerting effects declined within minutes after the end of the light stimulus, 

following various region-specific time courses, such as enhanced responses in 

the posterior thalamus, including the pulvinar nucleus, which has been impli­

cated in visual attention and alertness regulation (Vandewalle et al., 2006). This 
suggests that light may modulate activity of subcortical structures involved in 

alertness, thereby promoting cortical activity in networks involved in ongoing 

non-visual cognitive processes. Further evidence in support of time indepen­

dency of alertness builds up from a study in which participants were exposed to 

either bright light (5000 lux) or dim light (<10 lux) (control condition) either 

between 12:00 and 16:00 h or between 00:00 and 04:00 h. Bright light had a 
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time-dependent effect on heart rate and CBT, such that bright light exposure at 

night, but not during daytime, increased heart rate and CBT (Rüger  et al., 
2006). On the other hand, nighttime and daytime bright light reduced sleepi­

ness and fatigue significantly and similarly and thus was independent of its 

timing (Rüger  et al., 2006). 
The aforementioned studies used polychromatic bright light above 1000 lux. 

It could very well be that light with this high intensity does not exhibit time-

dependent alerting responses. 

C.	 DOSE- AND WAVELENGTH RESPONSE RELATIONSHIP OF LIGHT EXPOSURE ON 

ALERTNESS 

Although it is clearly recognized that bright light ( � 1000 lux) is an effective 
Zeitgeber and alerting factor in humans (Badia et al., 1991; Daurat et al., 2000; 
Foret et al., 1996; Myers and Badia, 1993), one could assume that the human 

circadian pacemaker is insensitive to lower levels of light illumination (<100 lux). 

However, it has been shown that the relationship between the resetting effect of 

light and its intensity follows a compressive nonlinear function, such that expo­

sure to lower illuminances still exerts a robust effect (Boivin et al., 1996). For 
instance, the dose–response function to a single episode of light in the phase delay 

region (light prior to temperature nadir) can be characterized by a logistic 

function with a high sensitivity, such that half of the maximal resetting and 

melatonin suppression achieved in response to bright light (9100 lux) can be 

obtained with 1% of this light (dim room light of ~100 lux) (Cajochen et al., 2000; 
Zeitzer et al., 2000b) (Fig. 4). Interestingly, the illuminance response function for 

alertness is similar to that of the dose–response function reported for the magni­

tude of suppression of plasma melatonin concentrations as a function of light 

intensity, as well as the dose–response function reported for the circadian phase 

resetting effects of light (Cajochen et al., 2000). This suggests that nighttime 

exposure to typical room light (90–180 lux) can exert an alerting effect in 

humans, regardless of whether alertness is quantified by subjective ratings or by 

analysis of the EOG (i.e., incidence of slow-eye movements) and the EEG 

(activity in the theta and alpha range). Surprisingly, humans were able to main­

tain stable circadian entrainment to a 24-h cycle in which ambient room light was 

about 1.5 lux, suggesting that even candlelight can induce small shifts of the 

human circadian system (Duffy and Wright, 2005). Taken together, this suggests 

a saturation point for light’s impact on alertness, and that this relatively high 

sensitivity may explain why in some previous studies a direct effect of light was 

not observed as the effects of “bright light” were compared to “dim light” 
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FIG. 4. Dose–response relationship between illuminance and subjective alertness, and the 

incidence of slow-eye movements. Data points represent the sum of alertness ratings and 

the number of 30-s epochs containing at least one slow-eye movement during the last 90 min of the 

light exposure episode for a single individual. The line represents a logistic regression model fit to the 

individual data points. Modified from Cajochen et al. (2000). 

conditions of sufficient intensity to elicit near maximal effects (Dollins et al., 1993; 
Myers and Badia, 1993). In contrast to the intensity dose-response relationships 

of light and the circadian system and alertness, very little is known about the 

duration dependence of the circadian resetting responses to light. However, in 

analyses of the human phase-response curve (“response to light”), maximum 

phase shifts to 1 h of bright white light (~10,000 lux) were about 40% as effective 

as phase shifts measured in response to 6.5 h of white light (~10,000 lux), despite 

representing only 15% of the stimulus strength (1 h/6.5 h) (Khalsa et al., 2003). 
Exposure to intermittent light also seems to be highly effective at resetting the 

human circadian system. The phase-resetting effect of 6.5 h of continuous bright 

white light (~10,000 lux) is comparable to a 6.5-h intermittent exposure consist­

ing of six cycles of 15 min of bright light (~10,000 lux) and 60 min of dim light 

(<3 lux) (Rimmer et al., 2000). Despite representing only 23% of continuous 

bright-light exposure conditions, the intermittentlight regimen elicited compar­

able phase shifts. Thus, a single sequence of intermittent bright-light pulses has a 

greater resetting efficacy on a per-minute basis than does continuous light 

exposure. In a subsequent study, exposure to two 45-min pulses of bright light 

in the early subjective evening entrained the circadian system to a non-24-h day, 
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indicating that intermittent pulses are highly efficient at resetting human circa­

dian rhythms (Gronfier et al., 2007), and can significantly contribute to efficient 
wakefulness. 

The relationship between the wavelength of light and its alerting response 

yielded clear superiority of short wavelength light (470 nm and lower) in 

comparison to other wavelengths (Cajochen et al., 2005; Lockley et al., 2006; 
Münch et al., 2006; Revell et al., 2006a). For instance, exposure to 460-nm 

monochromatic light for 6.5 h during the biological night attenuated subjective 

sleepiness (Fig. 5) and waking EEG power density in the delta–theta frequency 

range, with concomitant increase in the high-frequency alpha range, in com­

parison to light exposure to an equal photon density of 555-nm monochro­

matic light (Lockley et al., 2006). Given that greater responses were elicited 

FIG. 5. Effects of a 2-h light exposure at 460 nm (Dark gray circles), 550 nm (Light gray circles), 

and no light (Black squares) in the evening under constant posture conditions (i.e., supine in bed) on 

salivary melatonin levels and subjective sleepiness (mean values (n = 9) and SEM). For clarity, the 

SEM values for the 550-nm light condition were not plotted. Significant post hoc comparisons 

(p <0.05; Duncan’s multiple range test corrected for multiple comparisons) are indicated by the 

following symbols: �, 460-nm light vs. no light; r, 550-nm light vs. no light; and*, 460-nm light  vs.  

550-nm light. The pre-light exposure episode represents a 2-h dark adaptation episode under 0 lux, 

whereas the light level in the 1.5-h post-light exposure was 2 lux. Taken from Cajochen et al. (2006) 
with permission. 



Author's personal copy
73 WHAT KEEPS US AWAKE? 

following exposure to an equal number of photons of 460-nm light, as com­

pared to 555-nm light, it is very likely that photoreceptors mediating the acute 

effects of light on subjective and objective correlates of alertness are blue 

shifted relative to the visual photopic system. This blue-shift response was 

similarly observed in a study that compared a 2-h evening exposure to mono­

chromatic light of two different wavelengths (460 and 550 nm) at very 

low intensities, whereby subjects were more alert during the 460-nm than 

the 550-nm light (Cajochen et al., 2005). These findings corroborate to a 
wide range of non-visual light responses in humans, such as melatonin sup­

pression (Lewy et al., 1980; Zeitzer et al., 2000b), circadian phase shifting 
(Czeisler et al., 1986), nocturnal decline in EEG SWA (Cajochen et al., 1992; 
Münch  et al., 2006), and circadian gene expression (PER2) in oral mucosa 

(Cajochen et al., 2006). Common to these responses is that they are all more 

sensitive to short wavelength light. However, very recent findings suggest that 

cone photoreceptors contribute substantially to non-visual responses at the 

beginning of a light exposure and at low irradiances, whereas melanopsin 

appears to be the primary circadian photopigment in response to long-dura­

tion light exposure and at high irradiances (Gooley et al., 2010). 

D.	 NEUROANATOMICAL UNDERPINNINGS OF THE EFFECT OF LIGHT ON ALERTNESS 

AND COGNITIVE PERFORMANCE 

The neuroanatomical structures and the concomitant neurophysiology that 

mediate the capacity of light to enhance alertness and cognitive performance are 

currently under intensive investigation. It is known that ipRGCs project to a 

range of targets, including the SCN, subparaventricular zone, and pretectal area 

that are implicated in mediating NIF responses (Hattar et al., 2002). Furthermore, 

these cells also project directly to the VLPO that also receives secondary afferents 

from the SCN, subparaventricular zone, and DMH (Hattar et al., 2002). The 
VLPO innervates all of the major nuclei of the ascending monoaminergic and in 

particular the histaminergic pathways, which are thought to play a key role in 

wakefulness and EEG arousal (Aston-Jones et al., 1999; Lin et al., 1996; Saper 
et al., 2005b). Direct photic input to this nucleus may therefore alter VLPO 

activity and waking arousal levels. The LC is also involved in the regulation of 

the sleep–wake cycle (Saper et al., 2005b), regulating the amplitude of the 

sleep–wake circadian rhythm set by the SCN by increasing wakefulness during 

the active period (see also Section III, Gonzalez and Aston-Jones, 2006). 

Light impacts on cognitive performance through its synchronizing/phase­

shifting effects on the circadian clock or acutely via its alerting effects, as 
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performance (in tasks such as digit recall, serial addition–subtraction and simple 

reaction time tasks) can immediately improve after the onset of light exposure at 

night (Badia et al., 1991; Campbell and Dawson, 1990; Foret et al., 1996; Lockley 
et al., 2006) and also during the day (Phipps-Nelson et al., 2003; Ruger et al., 
2006). EEG and ocular correlates of alertness can vary with cognitive perfor­

mance, such that EEG alpha (8–12Hz) and beta (12–20Hz) activities show a 

pronounced circadian rhythm with a peak in the second half of the biological day 

(Cajochen et al., 2002). Light exposure reduces alpha, theta, and low frequency 
EEG activity, and also the incidence of slow-eye movements, which are correlates 

of sleepiness, and thus good indicators of inattention that increase as a result of 

extended wakefulness particularly during the biological night. Lights’ perfor­

mance enhancement, however, does not occur in a similar manner for all 

subcortical and cortical regions. Light-induced modulations of cortical activity 

during auditory cognitive tasks occur for alertness-related subcortical structures, 

such as the brainstem (LC—compatible region) (Vandewalle et al., 2007b); the 
hypothalamus, in a location encompassing the SCN (Perrin et al., 2004), and 
dorsal and posterior parts of thalamus (Vandewalle et al., 2006, 2007a), in long-
term memory and emotion-related areas, such as the hippocampus (Vandewalle 

et al., 2006) and amygdala (Vandewalle et al., 2007b). Taken together, these 
responses indicate that wide-range subcortical and cortical areas are activated 

by non-visual effects of light, during specific cognitive tasks. Since cognitive 

performance can exhibit a circadian modulation, the next logical question is 

whether these cortical responses are wavelength dependent. Blue light (460 nm) 

appears to be more effective in sustaining performance in a simple vigilance 

reaction time task compared to green light (550 nm) (Lockley et al., 2006). fMRI­

assessed brain responses undergo a wavelength dependency for higher executive 

task (2-back task), such that blue light enhances modulations of higher executive 

tasks in the brainstem (in an LC-compatible location), in the thalamus and insula, 

in relation to green (550 nm) and violet exposures (430 nm). In this case, the effect 

of blue light occurs before 1min after the start of the exposure (Vandewalle et al., 
2007b) and last for nearly 20min (Vandewalle et al., 2007a). However, the 

magnitude, time course, and regional brain distribution of non-visual effects of 

light heavily depend on the dose, duration, and intensity of the light exposure. 

Indeed, longer durations and higher intensities can elicit long-lasting and wide­

spread task-related responses (Perrin et al., 2004). While subcortical regions are 

activated faster and show short-lasting responses to light, cortical activity requires 

stronger and longer stimulations, as indicated in a study (Vandewalle et al., 2006), 
in which 20 min of bright white light induced both thalamic and cortical mod­

ulations that steadily declined after light exposure, albeit its rather lasting effects 

(responses were observed several minutes after the end of the light exposure). 

Moreover, when the duration of light exposure was reduced to less than a minute, 

the effects were mostly restricted to subcortical structures such as the dorso­
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posterior thalamus and the brainstem (LC-compatible area), and cortical mod­

ulations were sharply reduced (Vandewalle et al., 2007b). 
The importance of LC areas in this case is due to the fact that this region 

projects to numerous cortical sites and is, therefore, well placed to mediate light-

induced changes in alertness and cognition (Gonzalez and Aston-Jones, 2006). 

The thalamus, in particular its dorsal and posterior nuclei (i.e., pulvinar), is a key 

structure involved in the interaction between alertness and cognition (Portas et al., 
1998). Thus, light-induced changes in thalamic activity can be directly implicated 

in enhanced alertness during light exposure. Given that the thalamus plays a 

critical role in the relay of information to the cortex, it can regulate information 

flow in the brain, and an effect of light on the thalamus may thus lead to 

widespread cortical effects. 

E. NON-CLINICAL APPLICATIONS OF LIGHT 

The application of light in non-clinical settings, such as intercontinental travel 

(jet-lag), shift work, and even non-shift working environments, is under intense 

scrutiny. The main assumption for the first two cases is the misalignment between 

the internal circadian pacemaker and the external environment. As a consequence, 

this circadian deregulation may contribute to health problems in the long term 

such as sleep disorders, cardiovascular disease, and diabetes (Rajaratnam and 

Arendt, 2001). Previous strategies to reduce jet-lag have focused on shaping the 

perceived LD cycle after arrival, in order to facilitate a phase shift in the appro­

priate direction. In one study, phase advancements of habitual sleep–wake sche­

dules and light exposure in the morning were investigated in order to test the idea 

that if travelers could phase-advance their circadian rhythms prior to eastward 

flight, they would arrive with their circadian rhythms already partially re-entrained 

to local time. For this three treatments were used, in which habitual sleep schedule 

was advanced by 1 h/day for 3 days, together with morning light exposure for the 

first 3.5 h after waking on each of the 3 days. This exposure was either continuous 

bright light (>3000 lux), or intermittent bright light (>3000 lux, 0.5 h on, 0.5 off, 

etc.), or ordinary dim indoor light (<60 lux). Dim light melatonin onset (DLMO) 

phase advance was higher in the continuous light exposure (nearly 2 h), although it 

did not drastically differ from the intermittent light exposure. Importantly, in both 

cases, alertness was significantly higher under light exposure (Burgess et al., 2003). 
With respect to shift work, it is unambiguous that the circadian misalignment 

between the endogenous circadian signal and the imposed rest-activity cycle is one 

of the main sources of sleep, performance, and health troubles in night-shift work­

ers (Lamond et al., 2003). Timed bright light exposure during night work can 
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reduce circadian misalignment in night workers. As an illustration, shift workers 

under bright light exposure (7000–12,000 lux) during the night (and darkness 

during the day) had a temperature nadir shifted after 4 days of treatment to a 

significantly later, mid-afternoon hour (compared to the previous 03:00 h), indicat­

ing a successful circadian adaptation to daytime sleep and nighttime work. Simi­

larly, there were concomitant shifts in subjective assessment of alertness and 

cognitive performance, both of which improved substantially under this light 

exposure (Czeisler et al., 1990). However, despite the fact that scheduled bright 

light and darkness can phase shift the circadian clocks of night workers for 

complete adaptation to a night work with day sleep schedule, few night workers 

would rather be out of phase with the diurnal world on their days off. Similarly in 

other situations, such as rapidly rotating shifts and the normal office environment, 

it is more appealing to time light exposures toward improving alertness without 

phase shifting (Horowitz and Tanigawa, 2002). However, given that there is no 

dead zone for phase shifting the circadian system in humans (Khalsa et al., 2003), it 
is not conceivable to enhance alertness with light without affecting circadian phase. 

Thus, a “compromise” circadian phase position for permanent night-shift work in 

which the sleepiest circadian time is delayed out of the night work period and into 

the first half of the day sleep episode would seem a feasible alternative (Smith et al., 
2009). In a recent study, the target compromise phase position was a DLMO of 

3:00h, which puts the sleepiest circadian time at approximately 10:00 h. This was 

predicted to improve night-shift alertness and performance while permitting suffi­

cient daytime sleep after work as well as late-night sleep on days off. For such, 

intermittent four 15 min of bright light pulses were conducted during each night-

shift, together with recommendations such as use of dark sunglasses during the day, 

sleep in dark bedrooms at scheduled times, and outdoor afternoon light exposure, 

all of which to keep rhythms from delaying too far. Interestingly, subjects who 

phase delayed close to the target phase (3:00 h) performed better and were more 

alert during night shifts. This suggests that light application in night shift workers is 

both a feasible and promising intervention (Smith et al., 2009). 
Controlled light and dark exposure during the daytime also has a significant 

impact on circadian phase and could be an easier alternative to implement in 

real-life situations. In a recent field study (Viola et al., 2008), the effects of 
exposure to blue-enriched white light (17,000K) were investigated in comparison 

to another white light (4000K) during daytime work hours in an office setting. 

Blue-enriched white light substantially improved subjective measures of alertness, 

mood, performance, evening fatigue, concentration, and dramatically reduced 

daytime sleepiness (Fig. 6). This suggests that blue-enriched white light can 

enhance self-reported measures of alertness, performance, and fatigue after day­

time exposure in a “real-life” setting for people who work normal office hours 

without any abnormal sleep–wake schedule being imposed, which makes it an 

appealing alternative to enhance alertness. 
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FIG. 6. Exposure to blue-enriched white light at 17000 k (Dark gray bars) during daytime work 

hours improves subjective alertness, performance, evening fatigue, and sleep quality, in comparison to 

white light at 4000K (White bars). Modified from Viola et al. (2008). 

To sum up light exerts powerful non-visual effects on a wide range of 

physiological, behavioral, and subjective parameters, ranging from alertness 

to complex behavioral processes like cognition. However, in order to achieve 

optimal alerting response to light, several factors including dose, duration, 

timing, and wavelength should definitely be taken into account. Novel evidence 

points to a potential role of the non-image forming system in the regulation of 

alertness. This opens an exciting area of investigations that may unravel how 

the retinal and suprachiasmatic networks are involved in the regulation of 

circadian rhythms and sleep–wake homeostasis. 

IV. Effects of Melatonin on Human Sleep and Wakefulness 

Pineal melatonin is primarily a neuroendocrine transducer of external time 

(LD cycle) promoting an increased propensity for “dark appropriate” beha­

vior. The most unequivocal characteristic of endogenous melatonin is its utility 

to be used alone or in combination with CBT as a phase marker of the 

endogenous circadian pacemaker located in the SCN. However, there are 

three major reasons, which imply that melatonin could also play an important 

role in the regulation human sleep–wake behavior: 
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1.	 The endogenous melatonin rhythm exhibits a close temporal association 

with the endogenous circadian component of the sleep propensity rhythm. 

2.	 There is evidence that exogenous melatonin (oral intake) is able to induce 

sleep when the homeostatic drive to sleep is insufficient, to inhibit the drive 

for wakefulness emanating from the circadian pacemaker and to induce 

phase shifts in the circadian clock such that the circadian phase of increased 

sleep propensity occurs at a new desired time. 

3.	 Light’s acute alerting response depends on its capacity to suppress 

endogenous melatonin levels during the biological night. 

A. ENDOGENOUS MELATONIN AND THE HUMAN CIRCADIAN SLEEP–WAKE CYCLE 

Melatonin (N-acetyl-5-methoxytryptamine) is a major secretory product of 

the pineal gland, and its production is under circadian control by the SCN. 

Because it is produced exclusively at night, it has been referred to as “a chemical 

code of darkness” (Arendt, 2006). The relationship between external LD cycles 

and melatonin production can be explained via a multisynaptic pathway begin­

ning with photic transduction of light at the level of the retina; transmission of this 

LD information via the retinohypothalamic tract (RHT) to the SCN; a descend­

ing pathway from the SCN through the superior cervical ganglion in the spinal 

cord; and, finally, an ascending pathway to the level of the pineal (Vollrath, 

1984). Data in tetraplegic patients, whose melatonin production was absent, 

support the hypothesis that the human pineal must be stimulated by the sympa­

thetic nervous system to produce melatonin (Zeitzer et al., 2000a). At a functional 
level, bright light acts through this pathway to acutely suppress melatonin 

production in the pineal (Lewy et al., 1980). 
The increase in melatonin secretion in the evening correlates with an increase in 

sleep propensity (Cajochen et al., 1999b; Tzischinsky et al., 1993). This latter 
phenomenon has been referred to as “the opening of the sleep gate” (Lavie, 1997) 

and is most likely related to an inhibitory effect of melatonin on SCN activity (Liu 

et al., 1997). In parallel, the entire thermoregulatory cascade (i.e., decrease in heat 

production and increase in heat loss leading to decrease in CBT) starts with the rise 

in endogenous melatonin levels in the evening (Kräuchi  et al., 2000). As a conse­
quence, alertness levels start to decline, sleepiness kicks in, and sleep is eventually 

commenced. The association of sleep with the melatonin rhythm has been con­

firmed in blind people in whom the circadian pacemaker is not entrained (Lockley 

et al., 1997; Nakagawa et al., 1992) and in sighted subjects with non-24-h sleep–wake 
cycle syndrome (Uchiyama et al. 2000). Results obtained from studies using the 

forced desynchrony protocol to separate out circadian- and wake-dependent com­

ponents of behavior clearly show that the circadian increase in melatonin secretion 
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coincides with a decrease in wake episodes during scheduled sleep episodes (Dijk 

and Cajochen, 1997). Sleep consolidation gradually deteriorates during that phase 

of the circadian cycle with low melatonin production, and EEG activation during 

wakefulness is also timed at a specific phase relative to the circadian melatonin 

rhythm (Cajochen et al., 2002). 
Despite the close temporal association between endogenous melatonin levels and 

sleep–wake rhythms, it is still a matter of debate whether endogenous melatonin is 

causally implicated in the regulation of sleep and wakefulness (van den Heuvel et al., 
2005; Zhdanova, 2005), since the ability to sleep is still possible in the absence of 

detectable endogenous melatonin during the day, or in tetraplegic patients (Scheer 

et al., 2005), and only a moderate incidence of sleep disturbance has been reported in 

pinealectomized patients (Macchi and Bruce, 2004). Furthermore, absolute melato­

nin production (which varies enormously between individuals) does not correlate 

with sleep quality in the elderly (Youngstedt et al., 1998) or elderly sleep-maintenance 

insomniacs (Hughes et al., 1998). However, several lines of evidence suggest that 

endogenous melatonin levels may still play a role in consolidated sleep and/or 

wakefulness. Acute suppression of the nighttime melatonin surge—either by light 

or beta-blockers —compromises sleep quality, which can be reversed by melatonin 

supplementation (Cajochen et al., 1998; Van Den Heuvel et al., 1997). In a survey 
of 13 adult pineal surgery patients, over half the patients (54%) reported nighttime 

wake periods lasting 1 h or longer, 31% reported total nighttime sleep durations of 

less than 6 h, and 38% complained of experiencing poor or disturbed sleep every 

night (Macchi et al., 2002). The extent to which these disturbances are directly 
attributable to pineal dysfunction rather than to a general effect of brain surgery 

per se is not entirely clear, but points to compromised sleep under chronic absence 

of nighttime melatonin secretion. Similarly, in the study of Scheer et al. (2005), all 
subjects with a complete cervical spinal cord injury, which interrupts the neural 

pathway required, had chronically impaired sleep efficiency and quality (Scheer 

et al., 2005). Furthermore, in a study investigating the effect of bright light and 

melatonin on neurocognitive function and sleep in elderly residents, long-term 

bright light (5 years) significantly increased endogenous melatonin levels at night 

concomitant with an improvement in subjective and objective sleep quality 

(Riemersma-van der Lek et al., 2008). 

B. EFFECTS OF EXOGENOUS MELATONIN ON HUMAN SLEEP AND WAKEFULNESS 

The first evidence that exogenous melatonin affects wakefulness was provided 

by the work of Aaron Lerner, who discovered melatonin in 1958 (Lerner et al., 
1958). When he started to treat patients suffering from vitiligo, a human 
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pigmentation disease, he noted that many of his patients became sleepy and fell 

asleep. Since then numerous laboratory studies under stringent conditions clearly 

demonstrated that administration of melatonin acutely affects sleep and wakeful­

ness in humans. Exogenous melatonin elicits all the physiological effects which 

occur in the evening during endogenous melatonin secretion (for a review, see 

Cajochen et al., 2003). Indeed, exogenous melatonin is most effective when 

endogenous levels are low during the biological day. It elicits time-dependent 

soporific effects, which have been corroborated with electrophysiological mea­

sures of sleepiness such as (EEG) theta activity during wakefulness (Cajochen 

et al., 1997b) and with brain correlates of sleepiness in an fMRI study, which 

highlighted the role of melatonin in priming sleep-associated brain activation 

patterns in anticipation of sleep (Gorfine et al., 2006). In an experiment where we 

blocked the natural evening increase in heat loss, subjective sleepiness, and 

melatonin secretion by light exposure, we could show that melatonin replace­

ment (5mg) acutely recovered the evening increase in heat loss, subjective 

sleepiness, and also theta activity in the waking EEG (Cajochen et al., 1998; 
Krä uchi et al., 1997). Nighttime melatonin administration does not affect sleep 

consolidation or sleep efficiency (Cajochen et al., 1997a), whereas, during day­
time, an improvement in sleep efficiency could be found (Dijk et al., 1995). More 

recent data from a forced desynchrony protocol, where melatonin was given to 

healthy young adults across a full range of circadian phases, confirm that 

exogenous melatonin can only increase sleep efficiency outside the time window 

of its normal production (Fig. 7; Wyatt et al., 2006). 
Similar findings come from an extended sleep protocol. Chronic administration 

of melatonin in a slow-release formulation during a 16-h sleep opportunity begin­

ning at 16:00h resulted in a redistribution of sleep so that sleep efficiency during the 

first half of the sleep opportunity was substantially higher during melatonin treat­

ment compared to placebo (Rajaratnam et al., 2004). These two studies provide 
strong support for the hypothesis that exogenous melatonin attenuates the wake-

promoting signal of the endogenous circadian pacemaker, allowing for increased 

sleep efficiency at circadian phases corresponding to the habitual wake episode. 

C.	 IMPLICATIONS FOR THE TREATMENT OF INSOMNIA AND CIRCADIAN RHYTHM 

DISORDERS 

Melatonin’s soporific and chronobiotic properties make it an optimal candi­

date for treating sleep, in addition to circadian rhythm disorders. In our view, the 

most successful attempt to treat insomnia and changes in circadian phase position 

by melatonin has been carried out in free-running blind people. Optimal 
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FIG. 7. Mean sleep efficiency levels during a forced-desynchrony protocol, folded at the intrinsic 

circadian period derived from core body temperature. The figure shows the circadian rhythm of 

endogenous sleep propensity (percentage of sleep of recording time, placebo group in black, melatonin 

0.3 mg group in red), as well as the endogenous melatonin levels in the placebo condition (gray area). 

Modified from Wyatt et al. (2006). 

melatonin treatment in those people should utilize not only its soporific effects by 

administration close to the desired bedtime, but also its chronobiotic properties, in 

order to entrain sleep–wake behavior (Lockley et al., 2007). Another promising 

patient group are elderly patients with insomnia. The results of melatonin treat­

ment administered before bedtime in elderly insomniacs were not consistent (for a 

review, see Olde Rikkert and Rigaud, 2001). However, Olde Rikkert and Rigaud 

concluded that melatonin is most effective in elderly insomniacs who chronically 

use benzodiazepines and/or with documented low melatonin levels during sleep. 

Abnormal timing of sleep with respect to circadian phase occurs in the delayed 

sleep phase syndrome (DSPS), in which sleep occurs at a delayed clock time relative 

to the LD cycle, social, work, and family demands. In the first use of melatonin in 

patients with DSPS, it was found that when administered 5 h before sleep onset for 

a period of 4 weeks, melatonin (5mg) advanced sleep onset and wake times 

compared with placebo (Dahlitz et al., 1991), which was later confirmed by Nagte­

gaal et al. (1998) and Mundey et al. (2005), and is most effective in DSPS patients 

with shorter habitual sleep time and later clinical onset (Kamei et al., 2000). 
The first application of melatonin using chronobiological principles was 

to alleviate the perceived effects of jet-lag. There have been many placebo­
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controlled and placebo-uncontrolled studies that have been summarized in a 

Cochrane (Herxheimer and Petrie, 2002). This stringent analysis concludes that 9 

of 10 trials of melatonin, taken close to the target bedtime at destination, 

decreased jet-lag symptoms arising after flights crossing five or more time 

zones. One difficulty in using melatonin for jet-lag is that its use requires admin­

istration at times when it will have undesired soporific properties. 

There is also a great interest in whether melatonin can facilitate phase-shifting in 

night-shift workers; however, few studies have measured such phase shifts. In two 

laboratory studies, circadian rhythms were measured before and after a large shift in 

the sleep–wake schedule (Dawson et al., 1995; Samel et al., 1991). Melatonin (5mg) 

was administered during the phase-advance portion of the phase response curve 

(PRC) and produced larger circadian phase shifts than placebo (Samel et al., 1991). 
In the other study, subjects took a 4mg melatonin (or placebo) before and during 

their daytime sleep (Dawson et al., 1995) and melatonin did not produce a larger 

phase delay than placebo. In a night-shift field study, melatonin produced larger 

circadian phase shifts than placebo in only 7 of the 24 subjects studied (Sack and 

Lewy, 1997). Overall, these studies do not provide strong evidence that melatonin 

can help phase shift the circadian rhythms of night-shift workers, in particular, when 

comparing its action as being less strong than exposure to light. One problem has 

been the lack of control over time of melatonin administration and of the subjects’ 

sleep schedules. In a recent study where the timing of melatonin administration, the 

sleep–wake schedule and, to some extent, the LD cycle could be controlled in a field 

setting, melatonin clearly produced larger phase advances than placebo in the 

circadian rhythms of melatonin and CBT (Sharkey and Eastman, 2002). Moreover, 

significantly larger phase advances with 0.5 and 3.0mg melatonin compared with 

placebo have been reported in a study to determine if phase advances induced by 

morning light could be increased with afternoon melatonin (Revell et al., 2006b). 
Additional caution is required in this setting to avoid the soporific effects of mela­

tonin during work requiring vigilance, or driving home after the shift. 

In an attempt to take advantage of the therapeutic opportunities of melato­

nin, several melatonin agonists with improved properties in comparison to 

melatonin have been developed. Some of these agents are selective for specific 

melatonin receptors (MT1, MT2). Results from animal studies suggest that MT1 

and MT2 receptors have distinct functional roles in the SCN, albeit with some 

overlapping function (for a review see Turek and Gillette, 2004). These distinct 

roles provide great potential for receptor-specific pharmacological agents to affect 

specific aspects of the sleep–wake cycle and/or circadian rhythmicity. It may be 

possible to develop specific agents that promote sleep without phase-shifting the 

circadian clock, or the converse. The three more prominent examples of mela­

tonin receptor agonists that are the furthest along in clinical development are 

Agomelatine, Ramelteon, and Tasimelteon. All of them appear to be efficacious 

in the treatment of circadian rhythm sleep disorders and some types of insomnia 
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(for a review see Ferguson et al., 2010). An important point for the effects of 

melatonin analogues is to understand that they are not hypnotic drugs that 

resemble benzodiazepines and their derivatives. Melatonin-like compounds 

amplify day–night differences in alertness and sleep quality. 
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